Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY

LABORATORY PLAN

Academic Year 2019-2020

Program:	B E – Civil Engineering
Semester :	4
Course Code:	18CVL47
Course Title:	Engineering Geology Lab
Credit / L-T-P:	2 / 0-0-3
Total Contact Hours:	42
Course Plan Author:	DR. K. SATISH

Academic Evaluation and Monitoring Cell

#29 HESARAGATTA MAIN ROAD, CHIMNEY HILLS CHIKKABANAVARA POST BANGALORE-560090 Phone -080-23721477/28392221 WWW.skit.org , EMAIL:Skitprinci1@gmail.com

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION	4
1. Laboratory Overview	4
2. Laboratory Content	4
3. Laboratory Material	5
4. Laboratory Prerequisites:	5
5. Content for Placement, Profession, HE and GATE	6
B. Laboratory Instructions	7
1. General Instructions	7
2. Laboratory Specific Instructions	, 7
C. OBE PARAMETERS	7
1. Laboratory Outcomes	, 7
2 Laboratory Applications	, 8
3. Mapping And Justification	a
4. Articulation Matrix	a
5. Curricular Gap and Experiments	ő
6. Experiments Beyond Syllabus1	1
D. COURSE ASSESSMENT	1
1 Laboratory Coverage	1
2. Continuous Internal Assessment (CIA).	2
F EXPERIMENTS	2
Experiment 01: Identification of Minerals based on their physical Properties	- 2
C) Non-cilicato minorals	<u>~</u> л
C/ NOT-SILCALE THILETALS.	+
Form - Granular	4
Colour - (varieties of quartz)	4
Experiment 2 : Engineering Properties of Rocks: Identification of rocks based on	
their index properties	8
Identification of rocks based on their index properties	Э
Identification of rocks based on their index properties	Э
Experiment 03 : Borehole problems	6
Borehole Problems	7
To determine subsurface behavior of rocks, their attitude (Dip&strike)	7
Experiment 04 : DIP AND STRIKE PROBLEMS	3
Experiment 05: Thickness problems	9
To interpret toposheets and learn to extract Drainage Basin and Morphometric	
Analysis	1
Experiment 07 : Geological maps	1
Geological maps	2
Experiment 08: Satellite images	2
Satellite Images	3
Interpretation of satellite images	3
Satellite images and tracingsneets	3
Experiment 09: Field Work	3
Field work	4
Field WOIK	4
r. Content to Experiment Outcomes	4
1. I LPA Parameters	4

2. Concepts and Outcomes:

Note : Remove "Table of Content" before including in CP Book

Each Laboratory Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Ove	rview		
Degree:	B.Tech	Program:	CV
Year / Semester :	2/4	Academic Year:	2019-20
Course Title:	Engineering Geology lab	Course Code:	18CVL47
Credit / L-T-P:	2/0-0-3	SEE Duration:	180 Minutes
Total Contact Hours:	42 Hrs	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	5/1 Experiment
Lab. Plan Author	DR. K. SATISH	Sign	Dt : 24/03/2020
Checked By:		Sign	Dt :

2. Laboratory Content

Expt.	Title of the Experiments	Lab Hours	Concept	Blooms Level
1	Identification of minerals as mentioned in theory, their properties, uses and manufacturing of construction materials.	08	Minerals	L3
2	Identification of rocks as mentioned in theory, their engineering properties and uses in construction and decorative purposes	08	Rocks	L3
3	Borehole problems: Determination of subsurface behavior of rocks, their attitude related to foundation, tunnels, reservoirs and mining. Triangular and Square methods. (2 methods)	04	Borehole problems	L4
4	Dip and Strike problems. Determine Apparent dip and True dip. (2 methods)	04	Attitude of Strata	L4
5	Calculation of Vertical, True thickness and width of the outcrops. (3 methods)	04	Thickness of Strata	L4
6	Study of Toposheets and Interpretation, Extraction of Drainage Basin and its Morphometric Analysis. (3Toposheets)	04	Toposheets	L5
7	Interpretation and drawing of sections for geological maps showing tilted beds, faults, unconformities etc. (10 Maps)	08	Geological maps	L5
8	Interpretation of Satellite Images. (2 Satellite images)	04	Satellite Imageries	L5
9	Field work– To identify Minerals, Rocks,	24	Field Work	L6

Geomorphology and Structural features with related to the Civil Engineering projects		

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in	Availability
		book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1-9			In Lib / In Dept
	Text Books :		
	1. P.K.MUKERJEE, Textbook of Geology, WorldPress Pvt. Ltd., Kolkatta		
	2. Engineering and General Geology – Parbin Singh, Katson Educaitio	hal Series	ä.
	3. MP Billings, Structural Geology, CBS Publishers and Distributors, Ne	w Delhi.	
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2	1. Groundwater Hydrology, David Keith Todd, Wiley.		In Dept
	2. B.S. Satyanarayana Swamy, Engineering Geology Laboratory Manual,		
	Dhanpat Rai Sons, New Delhi		
	3. LRA Narayan, remote sensing and its applications, UniversityPress.		
	4. Johnl Plattand John Challinor, Simple Geological		
	Structures,ThomasMurthy&Co, London.		
С	Concept Videos or Simulation for Understanding	-	-
C1	https://www.youtube.com/results?search_query=igneous+rocks		
C2	https://www.youtube.com/watch?v=qFEBPD3JEOM		
c3	https://www.youtube.com/watch?v=32NG9aeZ7_c		
C4	https://www.youtube.com/watch?v=MwBVztOz2No		
C5	 <u>https://www.youtube.com/watch?v=ozgVEkFsNoE</u> 		
c6	 <u>https://www.youtube.com/watch?v=5KdMJOwHRc0</u> 		
C7	 <u>https://www.youtube.com/watch?v=a1fU2BLNWRU</u> 		
c8	 <u>https://www.youtube.com/watch?v=BuN6gEU-yK4</u> 		
c9	 <u>https://www.youtube.com/watch?v=UTaQgdghKZs</u> 		
E	Recent Developments for Research	-	-
		?	In lib
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1			
?			

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5. Students must have learnt the following Courses / Topics with described Content

Slude	students must have team the following Courses / Topics with described Content						
Expt.	Lab.	Lab. Name	Topic / Description	Sem	Remarks	Blooms	
	Code					Level	
1	18CV47	Engg. Geology	Theoretical knowledge of Engg.	3		L3	
			Geology				

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Topic / Description	Area	Remarks	Blooms Level
1	Identification of minerals as mentioned in theory, their properties, uses and manufacturing of construction materials.	Higher Education/ GATE/UPSC , etc.	Able to identify minerals in the field	L3
2	Identification of rocks as mentioned in theory, their engineering properties and uses in construction and decorative purposes	Higher Education/ GATE/UPSC , etc.	Able to identify rocks in the field	L3
3	Borehole problems Determination of subsurface behavior of rocks, their attitude related to foundation, tunnels, reservoirs and mining. Triangular and Square methods. (2 methods)	Higher Education/ GATE/UPSC , etc.	Students will understand subsurface condition	L4
4	Dip and Strike problems. Determine Apparent dip and True dip. (2 methods)	Higher Education/ GATE/UPSC , etc.	Able to find out attitude of the strata	L4
5	Calculation of Vertical, True thickness and width of the outcrops. (3 methods)	Higher Education/ GATE/UPSC , etc.	Able to find out thickness of the strata	L4
6	Study of Toposheets and Interpretation, Extraction of Drainage Basin and its Morphometric Analysis. (3Toposheets)	Higher Education/ GATE/UPSC , etc.	Learn morphomeric analysis	L5
7	Interpretation and drawing of sections for geological maps showing tilted beds, faults, unconformities etc. (10 Maps)	Higher Education/ GATE/UPSC , etc.	Interpret the structural features	L5
8	Interpretation of Satellite Images. (2 Satellite images)	Higher Education/ GATE/UPSC , etc.	Learn to interpret false color images	L5

9	Field work – To identify Minerals, Rocks, Geomorphology and Structural features with related to the Civil Engineering projects	Higher Education/ GATE/UPSC , etc.	Students knowledge minerals, structural fe	will in ic rocks eatures	apply lentificat and in the fie	their ion of other ld.	L6

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in-	
	charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the	
	readings /observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure	
	of the experiment in the Immediate last session should be submitted and	
	certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	When the experiment is completed, should return all the	
	components/instruments taken for the purpose.	
8	Any damage of the minerals and rocks will be viewed seriously either by	
	putting penalty or by dismissing the total group of students from the lab for	
	the semester/year	
9	Completed lab assignments should be submitted in the form of a Lab	
	Record	
10	Be careful while using acids.	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks
1	Before conducting any test, students shall come prepared with theoretical	
	in each test).	
2	Students shall make sure to have the knowledge of using streak plate and Mohs scale of Hardness.	
3	Students shall give importance to accuracy and precision while conducting the test and interpreting the maps/images/toposheets.	
4	Students shall acquaint themselves with the safe and correct usage of instruments / equipment's under the guidance of teaching / supporting staff of the laboratory	

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt.	Lab Code #	COs / Experiment Outcome	Teach.	Concept	Instr	Assessment	Blooms'
			Hours		Method	Method	Level
-	-	At the end of the experiment, the student should be able to	-	-	-	-	-
1	18CVL47.1	Know and the engineering properties of minerals and their engineering uses.	08	Minerals	Lecture and demons tration	C.IA	L3
2	18CVL47.2	Know engineering properties of rocks and their engineering	08	Rocks	Lecture and demons	C.IA	L3

		uses			tration		
3	18CVL47.3	Determine subsurface behavior of rocks, their attitude related to foundation, tunnels, reservoirs and mining.	04	Borehole problems	Lecture and demons tration	C.IA	L4
4	18CVL47.4	Determine attitude of rocks in Civil Engineering projects (Railway lines, tunnels, dams, reservoirs).	04	Attitude of Strata	Lecture and demons tration	C.IA	L4
5	18CVL47.5	Determine/calculate vertical, true thickness and width of the outcrops.	04	Thickness of Strata	Lecture and demons tration	C.IA	L4
6	18CVL47.6	Interpret toposheets and learn to extract Drainage Basin and Morphometric Analysis.	04	Toposheets	Lecture and demons tration	C.IA	L5
7	18CVL47.7	Interpret geological maps related to Civil Engineering Projects.	08	Geological maps	Lecture and demons tration	C.IA	L5
8	18CVL47.8	Interpret satellite Images.	04	Satellite Imageries	Lecture and demons tration	C.IA	L5
9	18CVL47.9	Identify Minerals, Rocks, Geomorphology and Structural features with related to the Civil Engineering projects	24	Field Work	Lecture and demons tration	C.IA	L6
-		Total	44	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	СО	Level
1	Able to identify minerals in the field	CO1	L3
2	Able to identify rocks in the field	CO2	L3
3	Students will understand subsurface condition	CO3	L4
4	Able to find out attitude of the strata	CO4	L4
5	Able to find out thickness of the strata	CO5	L4
6	Learn morphomeric analysis	CO6	L5
7	Interpret the structural features	CO7	L5
8	Learn to interpret false color images	CO8	L5
9	Students will apply their knowledge in identification of minerals, rocks and other structural features in the field.	CÔg	L6

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Expt	Map	ping	Mapping	Justification for each CO-PO pair	Lev						
			Level		el						
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-						
1	CO1	PO1,2 ,6,7,8, 9	MEDIUM	Student should be able to know engineering properties of rocks and their engineering uses.	L3						
2	CO2	PO1,2 ,6,7,8, 9	MEDIUM	Student should be able to determine subsurface behavior of rocks, their attitude related to foundation, tunnels, reservoirs and mining.	L3						
3	CO3	PO1,2 ,3,4,6, 7,8	HIGH	lent should be able to determine attitude of rocks in Civil Lz neering projects (Railway lines, tunnels, dams, rvoirs).							
4	CO4	PO1,2 ,3,4,6, 7,8	MEDIUM	Student should be able to calculate vertical, true thickness and width of the outcrops.	L4						
5	CO5	PO1,2 ,3,4,6, 7,8	HIGH	Student should be able to interpret toposheets and learn to extract Drainage Basin and Morphometric Analysis.	L4						
6	CO6	PO1,2 ,3,4,6, 7,8,9	HIGH	Student should be able to interpret toposheets and geological maps related to Civil Engineering Projects.	L5						
7	CO7	PO1,2 ,3,4,6, 7,8,9	HIGH	Student should be able to interpret satellite Images.	L5						
8	CO8	PO1,2 ,3,4,6, 7,8,9	HIGH	Student should be able to identify Minerals, Rocks, Geomorphology and Structural features with related to the Civil Engineering projects	L5						
9	CO9	PO1,2 ,3,4,6, 7,8,9	HIGH	The students will be able to use research-based knowledge and research methods including design of experiments, analysis and interpretation of dissolved oxygen content	L6						

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Experiment Outcomes	Program Outcomes						-									
Expt.	CO.#	At the end of the experiment	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1	CO1	Student should be able to	3	3	-	-	-	2	3	3	2	-	-	-	-	-	-	L3
		know the engineering																
		properties of minerals and																
		their engineering uses.																
2	CO2	Student should be able to	3	3	-	-	-	2	З	З	2	-	-	-	-	-	1	L3
		know engineering																
		properties of rocks and																
		their engineering uses.																
3	CO3	Student should be able to	3	3	3	3	-	3	2	3	-	-	-	-	-	-	-	L4
		determine subsurface																
		behavior of rocks, their	·															

		attitude related to foundation, tunnels, reservoirs and mining.																
4	CO4	Student should be able to determine attitude of rocks in Civil Engineering projects (Railway lines, tunnels, dams, reservoirs).	3	3	3	3	-	3	2	3	-	-	-	-	-	-	-	L4
5	CO5	Student should be able to calculate vertical, true thickness and width of the outcrops.	3	3	3	3	-	3	2	2	_	-	-	-	-	-	_	L4
6	CO6	Student should be able to interpret toposheets and learn to extract Drainage Basin and Morphometric Analysis.	3	3	3	3	-	3	2	2	3	-	-	-	-	-	-	L5
7	CO7	Student should be able to interpret toposheets and geological maps related to Civil Engineering Projects.	3	3	3	3	-	3	3	3	3	-	-	-	-	-	-	L5
8	CO8	Student should be able to interpret satellite Images.	3	3	3	3	-	3	3	3	3	-	-	-	-	-	-	L5
9	CO9	Student should be able to identify Minerals, Rocks, Geomorphology and Structural features with related to the Civil Engineering projects	3	3	3	3	-	3	3	3	3	-	-	-	-	-	-	L6
-		Average attainment (1, 2, or 3)																
-	PO, PSO	1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions; 4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork; 10.Communication; 11.Project Management and Finance; 12.Life-long Learning; S1.Software Engineering; S2.Data Base Management; S3.Web Design																

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Unit	Title	Teachi		Nc	am		CO	Levels			
		ng	CIA-1	CIA-2	CIA-3	Asa-1	Asa-2	Asa-3	SEE		
		Hours									
1	Identification of minerals as	08	-	-	I	-	-	-	1	CO1	L3
	mentioned in theory, their										Ũ
	properties uses and										
	manufacturing										
	construction materials										
	construction materials.										
2	Identification of rocks as	08	-	-	I	-	-	-	1	CO2	L3
	mentioned in theory, their										
	engineering properties and										
	uses in construction and										
	decorative nurnoses										
3	Borehole problems:	04	-	-	-	-	-	-	1	CO3	L4
	Determination of subsurface										
	behavior of rocks, their										
	attitude related to										
	foundation. tunnels.										
	reservoirs and mining										
	Triangular and Square										
	methods (2 methods)										
4	Dip and Strike problems.	04	-	-	-	-	-	-	1	CO4	L4
	Determine Apparent dip and										
	True dip. (2 methods)										
5	Calculation of Vertical, True	04	-	-	-	-	-	-	1	CO5	L4

	thickness and width of the outcrops. (3 methods)										
6	Study of Toposheets and Interpretation, Extraction of Drainage Basin and its Morphometric Analysis. (3Toposheets)	04	-	-	-	-	-	-	1	CO6	L5
7	Interpretation and drawing of sections for geological maps showing tilted beds, faults, unconformities etc. (10 Maps)	08	-	-	-	-	-	-	1	CO7	L5
8	Interpretation of Satellite Images. (2 Satellite images)	04	-	-	-	-	-	-	1	CO8	L5
9	Field work– To identify Minerals, Rocks, Geomorphology and Structural features with related to the Civil Engineering projects	24	-	-	-	-	-	-	1	CO9	L6
-	Total	44	_	_		_			10		
· -	IUlal	44			-	-			10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	20	CO1 to CO9	L3-L6
	-		
	-		
	-		
Other Activities – define –			
Slip test			
Final CIA Marks	40	-	-

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	10 Marks
2	Record Writing	10 Marks for each Expt
3	Internal Exam Assessment	20 Marks
4	Internal Assessment	40 Marks
5	SEE	60 Marks
-	Total	100 Marks

E. EXPERIMENTS

Experiment 01 : Identification of Minerals based on their physical Properties

_

-	Experiment	1 Marl	s		Date Planned		Date Conducted	
1	Title	Identificatio Garnet grou	on of i. R up, Mica	ock Form group &	ing minerals Talc, Chlorite	- Quartz gro , Olivine, Ast	up, Feldspar pestos, Calcit	group, e, Gypsum,
		etc. i. Ore formi Chromite, e	ng mine etc.	rals- Mag	netite, Hema	tite, Pyrite, P	Pyralusite, Gra	aphite,
2	Course	Student	should	l be al	ole to kn	ow the p	hysical, e	ngineering
	Outcomes	propertie	s of mi	nerals a	nd their en	gineering	uses.	
3	Aim	Identificatio	on of mir	nerals bas	ed on their p	hysical prop	erties.	
4	Material /	Streak Pl	ate, penl	knife, Che	emicals			
	Equipment Required							
5	Application Areas	Mineral re	esource	es, civil e	engineering	g uses.		
6	Remarks							
7	Faculty Signature with Date							

Mineralogy

1.1. Introduction

Mineralogy is a branch of Geology which deals with" the study of minerals". The subject of mineralogy attempts to study the various aspects of minerals.

The study of mineralogy includes the study of:

- Physical characters (Physical Mineralogy)
- Chemical characters (Chemical Mineralogy)
- The Optical properties (Optical Mineralogy)
- Mode of occurrence and the formation of minerals [X-Ray Mineralogy]

Due to the advancement of knowledge and improvement in techniques, Mineralogy also includes applied aspects.

A mineral can be defined as a" naturally occurring, homogeneous solid, inorganically formed having a definite chemical composition and ordered atomic arrangement".

According to this definition, a mineral will have the following characters:

1. It must have formed naturally; Minerals prepared in the laboratory by artificial method cannot be called minerals in the true sense.

2. Every mineral will be uniform or homogenous in composition.

3. It must be a solid, but the recent (latest) trend is to include coal and petroleum under minerals. But majority of the minerals are solids.

4. Inorganic processes form the minerals. Very rarely formation of certain minerals like Quartz, calcite etc. has been observed in certain parts of the human body, Even though such substances in the body possess the characters of minerals they cannot be called minerals.

5. Every mineral will have a definite chemical composition.

For example-- Quartz (SiO₂₎

Graphite (C) Calcite (CaCO₃)

6. Every mineral is characterized by a definite internal atomic arrangement of an atom.

1.2. Physical Properties of Minerals or External Characters of Minerals:

Minerals are characterized by a number of properties that can be observed externally. Such characters are called physical properties. The various physical properties can be studied under the following different headings: 1. 1.Physical properties of minerals depending on Light, Such as Form, Colour, Streak, Diaphaneity, Lustre.

2. 2.Physical properties of minerals depending on state of aggregation, such as Cleavage, Fracture, Hardness.

3. 3.Physical properties of minerals depending on the specific gravity of the mineral.

4. 4.Physical properties of minerals depending on certain senses, such as Taste, Feel and Odour (Smell).

5. Special properties such as Dil. Hcl. test, Magnetism.

1.Physical properties of minerals depending on Light

FORM: Minerals assume different shapes, which depend upon the Internal structure of the minerals.

Different terms have been used to describe the forms of different minerals.

The important terms that are commonly used are:

1. Fibrous- when the mineral has a thread- like structure. Example Asbestos.

2. Columnar: - When the mineral has a thick or thin columnar structure. Example- Hornblende

3. Granular-When the mineral has numerous grains, coarse or fine Example: Calcite, Chromite.

4. Crystalline- when the mineral has fine crystals packed together. Example: Galena, Pyrite.

5. Massive- when the mineral has an irregular structure. Example- Feldspar.

6. Bladed-

When a mineral appears to be composed of a blade-like structure. Example: Kyanite.

7. Acicular-

When the mineral consists of thin, sharp and slender needles as shown in the figure. Example: Natrolite.

- 8. Botryoidal Rounded aggregates of minerals like a bunch of grapes. Example: Chalcedony.
- 9. Foliated-

When the mineral consists of thin separable sheets. Example: Mica. **10.** Radiating-

When the fibers or needles are arranged around a central point. Example: Iron Pyrite. **11.** Tabular-

The mineral is flat rather than elongated as shown in the figure. Example: Calcite, Orthoclase.

When the mineral possesses rounded prominences like those of a Kidney as shown in the figure. Example: Hematite.

B) Colour: Colour is an important physical property of minerals, which depends upon light. The colour of any mineral depends up on the absorption of some and reflection of others of the colour of white light. If the mineral absorbs all the colour of white light, it appears Black.

If the mineral reflects all the colours of white light it appears, White.

A mineral appears red when it can absorb all the colours of white light except red colour.

Similarly, a mineral appears Green when it can absorb all the colours of white light except green colour.

C) Streak: Streak is nothing but the colour of the mineral in its powdery form. Rubbing the mineral against the streak plates can get streak. Some minerals will have the same colour from their massive form also in their powdery form.

For example, Natural gold is Yellow in both in its colour and powder form. There are some other minerals, which have different chloroform their massive form due to their powdery form.

For example, The mineral pyrite which is commonly called as "Fool's Gold" Is yellow in colour in its massive form but it gives a Black streak. Similarly Hematite, the ore of Iron will give Red or Brown Grayish brown in colour but it gives Cherry red Streak.

Mineral	Streak
Barite	White
Biotite	Colourless
Chalcopyrite	Black
Chromite	Brown
Galena	Lead-grey
Gold	Natural yellow
Graphite	Black
Gypsum	White
Haematite	Cherry-red
Limonite	Yellowish-brown
Pyrite	Black
Quartz	Colourless

Table: 1.1 Colour of Streak of Some Minerals

Siderite White

D) Diaphaneity: Diaphaneity means ability to transmit light. The terms used are:

i) Transparent: when the mineral allows the light to pass through it. In the case of transparent minerals the objects can be clearly seen through such minerals.

Example: Quartz and Calcite (Coloured varieties).

ii) Translucent: When the minerals allow only a part of the light to pass through. The outlines of any object cannot be seen clearly through such a lines of translucent mineral.

Example: Quartz and Calcite (Milky white varieties)

iii) Opaque: When a mineral does not allow any light to pass through. The Objects are not seen through opaque mineral.

Example: Bauxite, Hematite, and Magnetite.

E) Lustre

The Lustre of a mineral is its appearance in a reflected light, which is independent of its colour.

The terms used are:

(i) Adamantine- when a mineral has lustre like Diamond.

- Example: Zircon, Diamond, Sulphur etc.,
- (ii) Resinous- when a mineral has lustre like Grease.

Example: Opal amber and a variety of Zincblende.

(iii) Vitreous-When a mineral has lustre like Glass.

Example: Quartz, Calcite and in many other Silicate Minerals.

(iv) Pearly- when a mineral has lustre like Pearls.

Example: Talc. Brucite, Micas etc.,

(v) Metallic-When a mineral has lustre like metals.

Example: Galena, Pyrite, and Chalcopyrite.

(vi) Silky lustre- Mineral with a Silky shine

Example- Asbestos

(Vii) Dull- when a mineral has no lustre.

Example- Bauxite.

2. Physical Properties Of Minerals Depending On State Of Aggregation:

(A) Cleavage: cleavage of the mineral is its tendency to Split along certain parallel planes producing more or less Smooth surface.

Cleavage lines are the weaklings or Divisional planes in a mineral.

The terms used are:

i) Perfect, Good or Distinct- When a mineral can split up with great ease and give smooth surface.

Example: Mica, Feldspar

ii) Imperfect, Poor, Imperfect or None- When a mineral does not split up with an average force.

Example: Quartz.

(B) Fracture: fracture of the mineral may be defined as the appearance of its broken surface, when the mineral is hammered and broken.

The terms used are:

- i. Even fracture
- ii. Uneven fracture
- iii. Conchoidal fracture
- iv. Hackly fracture
- v. Earthy fracture

- (i) Even fracture-Appearance of a mineral in its broken surface is Smooth. Mineral examples: Chert, Mica.
- (ii) Uneven fracture- when the mineral breaks with very rough and coarse surfaces. Mineral examples: Chromite and various other minerals.
- (iii) Conchoidal fracture- when a mineral breaks with curved Surfaces or concentric Rings or half moon shape.

Mineral example: Quartz

(iv) Hackly fracture- when a mineral breaks with irregular Surfaces having sharp edges.

Mineral example: Native copper.

(v) Earthy fracture- when the broken surface is soft and almost smooth. Mineral example- Chalk.

(C) Hardness: The hardness of a mineral is the resistance it offers to abrasion, which is determined by observing the comparative ease or difficulty in scratching it with another mineral of known hardness. It is always expressed by Moh's Scale of Hardness given below-

Table-1.2 Moh's Scale Of Hardness

Standard Mineral and its composition	Hardness scale	Remarks

Talc Mg ₃ (Si ₄ O ₁₀) (OH) ₂	1	Can be scratched by a fingernail
Gypsum CaSO ₄	2	Can be scratched by a fingernail
Calcite CaCO ₃	3	Can be scratched by a copper coin
Fluorite CaF ₂	4	Can be scratched by a iron nail
Apatite Ca ₃ (F, CL, OH) (PO ₄)	5	Can be scratched by window glass
Orthoclase KALSI ₃ 0 ₈	6	Steel pocket knife
Quartz SiO ₂	7	Pen knife
Topaz Al ₂ (SiO ₄) (SOH) ₂	8	Can be scratched by a Pen knife
Corundum Al ₂ O ₃	9	Can be scratched by a Pen knife
Diamond C	10	Cannot be scratched by a Pen knife

A mineral with lowest hardness is talc and the mineral with the maximum hardness is Diamond. It has been observed that a soft mineral like Talc and Gypsum can be scratched with a Fingernail. A steel knife can cut Apatite and Orthoclase but not Quartz. The average hardness of a normal fingernail may be up to 2.5 whereas the hardness of penknife is 6.5

3. PhysicalProperties of Minerals Depending on Specific Gravity

The Specific gravity of a mineral is the ratio of its weight to the Weight of equal volume of water.

Densit<u>v = M</u>ass = M

Specific gravity is depending on the weight of the specimen -Palm is the Judge Low - Light minerals (less weight)

Medium - Intermediate minerals (medium weight)

High - Heavy minerals (much weight)

4. Physical Properties of Minerals Depending on Certain Senses Such as Taste, Feel and Odour

1. Taste: The terms used are-

(i) Alkaline-Taste of soda

(ii) Bitter-Taste of Epsom salt

(iii) Cooling- Taste of Saltpeter

(iv) Saline- Taste of common salt

(v) Sour- taste of Sulphuric acid

2. Feel: Feel is the sensation upon touching or handling minerals.

The terms used are-

"Greasy" "Soapy"

"Rough"

"Uarch"

"Harsh"

3. Odour: Some characteristic smell when rubbed breathed upon heated.

The terms used are-(a) Arsenical (b) Sulfurous (c)

Argillaceous

(a) Arsenical- Like the Odour of Garlic. Example-Orpiment(b) Sulphurous- Like the Odour of burning Sulphur. Example-Pyrite(c) Argillaceous-Like the Odour of clay.

Special Properties of Minerals: Special properties of minerals such as: (i) Magnetism (ii) Reaction with Dil, Hcl acid

Magnetism--Only few minerals are attracted by a Bar magnet or Horseshoe magnet. Such minerals are called Ferromagnetic. The most common minerals that attract a magnet are Magnetite, Pyrrhotite, Magnet, etc.,

Based on the strength of the magnetism, the minerals can be grouped Under the following headings.

(i) Highly Magnetic - Examples: Magnetite, Pyrrhotite

(ii) Moderate Magnetic- Example: Siderite, Iron Garnet, Ilmenite, and hematite

(iii) Weakly Magnetic- Example: Tourmaline, spinel, and monazite

(iv) Non magnetic - Example: Calcite, quartz, and feldspars

Reaction With Acid

Acid Test- Scratch a fresh even surface of the given mineral until grooved and powdered.

Certain carbonate minerals react with Hydrochloric acid.

Example: Calcite CaCO₃ is got. Add one or two drops of Dilute HCL. Carefully to it. Immediate effervescence (fizzing) confirms Carbonate especially CaCO₂.

1.3 CLASSIFICATION OF MINERALS	5
---------------------------------------	---

	1) Quartz group					
A) Silicate minerals	2) Feldspar group					
Rock forming minerals	3) Mica group					
	4) Amphibole group					
	5) Garnet group					
B) Non-silicate minerals	6) <u>Carbonate group</u>					
Rock forming minerals	Calcite, Dolomite, Magnesite.					
C) Non-silicate minerals	7) <u>Sulphide group</u>					
Ore forming minerals	Galena, Pyrite, Chalcopyrite.					
	8) <u>Oxide group</u>					
	Hematite, Magnetite, Bauxite, Corundum.					
	9) <u>Sulphate group</u>					
	Gypsum, Barytes.					

1.4 DESCRIPTION OF MINERALS:

1 Quartz Group Form - Granular Colour - (varieties of quartz)

Streak - Colourless

Luster - Vitreous

Cleavage – Absent

Fracture - Conchoidal to uneven

Hardness – 7 [High]

Sp. gr. – Low to Medium.

CC - Si 0₂

Occurrence– widely distributed all over India occurs Beach Sand, River sand. Uses: (1)Manufacture of glass, porcelain

(2) Flux in metallurgical operation

(3) Agates are used as Ornaments

(4) Amethysts are considered as semiprecious stone

(5) Pure quartz crystal shows piezoelectricity

(6)Quartz plates are used in controlling frequencies in radio circuits, radar, ultrasonic and multiple telephone lines.

(7) Fibre quartz wires are frequently used for transmission of telephone messages. Each minute fibre wire can send large messages.

(8) Quartz is used in refractories

(9) Pure silica is used in ceramics

(10)Pure sand, free from impurities is used in manufacturing Sand paper and Abrassive cloth.

Varieties of Quartz: Crystalline Varieties

- a) Rock crystal or colourless quartz [colourless, transparent]
- b) Rosy quartz [Rose colour, Translucent.]
- c) Milky quartz [Milk colour, translucent]
- d) GREY quartz [Grey colour, translucent]
- e) Amethyst [Purple or violet colour, translucent]
- f) Smoky quartz [Smoky- yellow or smoky-brown colour, translucent]
- g) Orange quartz [Orange colour, translucent]
- h) Green quartz (Green translucent] colour,)

[2] Cryptocrystalline Varieties

- a) Chalcedony [Botryoidal, uniform light colour]
- b) Agate [Banded, zebra Agate- zebra colour]
- c) Jasper [Blood red colour]
- d) Chert [Brick red colour]

[3] Amorphous Varieties

a) Opal,

2. Feldspar Group

Properties	Orthoclase	Plagioclase		Microcline	
Colour	Pink	White		Green	
Form	Tabular	Massive		Tabular	
Streak	Colour less	Colour Vitreous	less	Colour Vitreous	less
Lustre	Vitreous				
Cleavage	Present	Vitreous		Vitreous	

Hardness	6 (Medium)	Present	Present			
Sp.Gr.	2.6 (Medium)					
Chemical		6 (Medium)	6 (Medium)			
composition.	Potash feldspar	2.6 (Medium)	2.6 (Medium)			
		Soda feldspar	Potash feldspar			
Occurrence	Occurs in acidic igne	eous rocks – granite:	s and pegmatites			
Uses	Used in the manufa	cture of Sanitary war	e and Earthenware.			
	Feldspars are also used in the manufacturing of porcelain bits.					
	Feldspars are also used in the preparation of various types of glazed tiles					

3. Mica Group

Properties	Biotin Mica(Black Mic) Muscovite Mica (White Mica)		
Form	Foliated	Foliated		
Colour	Black	White colour		
Streak	Colourless	Colourless		
Diaphaneity	Translucent	Transparent		
Lustre	Pearly	Pearly		
Cleavage	Present	Present		
Fracture	Even	Even		
Hardness	Medium	Medium		
Sp.Gr.	Medium	Medium		
Chemical	Silicate of Mg, Fe, Al			

composition-	and K with [OH] ions.	Silicate of Al and K
Occurrence. Uses	Occurs in igneous and metamorphic rocks Lightweight concrete	Occurs in igneous and metamorphic rocks Used as an insulating material in Electrical Apparatus
		Mica powders are used in mica bricks, steel plants, lubricants, filter in paints, rubber, plastic materials, wall papers, etc

Experiment 2 : Engineering Properties of Rocks: Identification of rocks based on their index properties

-	Experiment No.:	2	Marks		Date Planned		Date Conducted	
1	Title	Ide	entification of	rocks based	on their index	properties		
2	Course Outcomes	Stı pro	udent sho	uld be ab rocks and	le to know their engine	v the ind ering use	lex and e es.	ngineering
3	Aim	lde	entification of	rocks based	on their index	properties		
4	Material / Equipment Required	ŕF	Penknife, Che	micals, Lens	es			
5	Application Areas	Сс	onstruction	materials a	and civil eng	gineering	uses.	
6	Remarks							
7	Faculty Signature with Date							

2. Petrology (Greek, Petra=Rock, Logos=Science)

2.1.Petrology is the branch of Geology deals with the study of rocks. Especially their mode of formation, Composition and uses for all types of engineering works.

The study of petrology is most important for a civil engineering in the selection of suitable rocks for building stones, Road metals etc.,

Rocks reveal the geological events of our mother earth. Rocks of other planets also decipher the secrets of their geological evolution.

2.2 Definition of as rock

A Rock is defined as the aggregation of the mineral constituents, which forms the earth's crust. Some rocks may be hard like Granite or soft like sand or clay. The hard and resistant substances may be called stones.

Example- Granite, Sandstones, Marble etc., that is why all the stones are rocks, but at the. Same time all rocks are not necessarily stones

2.3. Classification of rocks based on their Genesis

Broad classification of rocks on the basis of their mode of origin (Ref-Table)

i) Igneous rocks or primary rocks-

Formed by the consolidation of hot molten material magma.

Example-Granite, Syenite, Diorite, pegmatite, Dolerite, Basalt.

ii) Secondary rocks or Sedimentary rocks-

Formed by the consolidification of Sediments in the layered or bedded rocks deposited in the ocean bottom or huge lake etc.,

Examples-Breccia, Conglomerrrate, Shale, Sand stone, Limestone.

iii) Metamorphic rocks- Formed by the effects of temperature, pressure of both (by a process is known as 'Metamorphism") on the preexisting rocks.

Examples- Slate, Schist, Gneiss, Marble, Quartzite

2.4 Table: Classification of rocks based on their Genesis

Igneous rocks or	Sedimentary	Metamoi
Primary rocks	rocks or Secondary rocks	rocks o rocks
Volcanic	Organic	Thermal
Examples-Basalt,	Examples-	Example
Trachyte.	Fossiliferos Limestone.	
Hypobyssal Examples-Pegmatite	Chemical Example- Limestone.	Dynamic Example Schist.
Plutonic Examples-Granite, Syenite,	Mechanical Example-Shale,	Dynamo Example Quartzite
Diorite,	Conglomerate,	
Gabbro,	Breccia.	
Dunite etc.,		

2.5. Terminology

IGNEOUS ROCKS	SEDIMENTRY ROCKS	METAMORPHIC ROCKS
		or
Or First formed rocks	or secondary formed	Altered rocks
Or Primary rocks	or second formed	Allereu Tocks
,		OrThirdformed
OrHardrocks	Orsoftrocks	OrHardrocks
Or Consolidated rocks	or unconsolidated rocks	Or Consolidated rocks.

2.6.Classification of igneous rocks:

	Over Saturated	Saturated		Under Saturated
	ACID			ULTRA BASIC
	Silica content:			SiO ₂ < 44 %
	SiO ₂ >66%			
	Withfree quartz	INTERMEDIATE	BASIC	
		SiO ₂ ; 55-66 %	SiO2 44 - 55 %	
Mineral composition	Q, F, B, H	OF+PF+Hbl	Augite +PF	Olivine and little or no feldspar
Colour	Leucocratic	Me Socratic	Melanocratic	
Specific gravity	2.6-2.7	2.9	3.0	3.1
VOLCANIC	Rhyolite	Trachyte	Basalt	Limbergite

(Extrusive)	Dacite Obsidian	Andesite Phonolite	Alkali-Basalt	Olivine- basalt
HYPOBYSSAL	Granite- porphyry	Syenite-porphyry	Dolerite- porphyry	
Minor	Pegmatite	Diorite-porphyry	Dolerite	
Intrusive - sill, dyke,				
Laccolith.				
PLUTONIC	Granite	Syenite	Gabbro	Dunite
Major Intrusive	Grano-diorite	Diorite		Peridotite
Batholith, Boss		Nepheline- Svenite		Picrite
				Perkinite.

2.7.Classification of Sedimentary Rocks

Mode of Formation	Texture and Mineral	Rock types
	Composition	
Mechanically formed or	1.Rudaceous (Pebbly)	Breccia
Clastic	ii) Arenaceous (Sandy)	Conglomerate
	iii) Argillaceous	Sandstone
	(Clayey)	Shale
Chemically Formed	Massive	Limestone
(Precipitation/evaporation	(Caco _{3)- Calcite}	
/residual deposits)		
	Fossiliferos (Animal	Shell Limestone
	remains, Shells, Corals) Calcita	Or
Organically formed	Calcile	Coral Limestone
Sedimentary or Residual	Concretionary	Laterite

Deposits loosely cemented	(Clay, Fe2O _{AL2O3}	

2.8. Classification of Metamorphic Rocks:

Metamo	rphic agencies	Heat	Pressure (Stress)	Enormous heat and pressure together
Mode of	Formation (Process)	Thermal Metamorphi c Rocks	Dynamic Metamorphic rock	Dynamo thermal or Regional Metamorphic rock
Non foliated	Recrystallisation- Granulose	Marble_ Quartzite		
	Reorientation		Chlorite,	
Foliated	Schistose		Schist, Mica Schist	
Banded	Reorientation			Gneiss
	Gneissose			Augen Gneiss

2.9. Mode of Origin

1) For Igneous Rocks

Mode of origin		Acidic	Intermediat e	Basic	Ultra basi
	O		And the second second		

Plutonic	Granite	Syenite	Gabbro	
		Diorite		
Hypobyssal				
	Pegmatit e	Porphyries	Dolerite	
volcanic	Rhyolite	Trachyte	Basalt	
		Andesite		

(2) For Sedimentary Rocks

Mode of Origin	Examples
1) Mechanical	Breccia. Conglomerate, shale, sand stone
2) Chemical	Lime stone
3) Organic	Fossiliferos shale, Fossiliferos lime stone

(3) For Metamorphic Rocks

Mode of Origin	Examples
1) Dynamic Metamorphism	Slate, Schist, gneiss
2) Thermal Metamorphism	Marble
3) Dynamo thermal Metamorphism	Quartzite

Parent Rocks To The:

1) Slate,	Shale
2) N	limestone
3) Gnaice	Granite
4) (Sandstone

2.10 DESCRIPTION OF IGNEOUS ROCKS

Description of Plutonic Igneous Rocks:

Properties	Granite	Syenite	Diorite	Dunite
Colour	Light colour with White pink tint	Light colour	Light colour	Olive green, yellowish Green, greenish yellow
Grain size	Medium to coarse	Medium to coarse	Medium to coarse	Fine to medium
Texture	Equigranular (E)	Equigranular	Equigranular	Equigranular
Minerals Present	Quartz, Feldspar Biotite, Hornblende	Feldspars, Biotite, Hornblende	Quartz, Feldspars, Hornblende, Biotite	Olivine altering to Serpentine, Chromite, Magnetite
Mode of origin	PAIR	PIIR	PIIR	PUIR
Engineering Uses	a) Granite is one of the most important building stones Specially used for decoration, monumental and Architectural purposes	Though Syenite is not so common, yet it can be used instead of granite.	Used as a building stone	Used for Ornamental purposes
	b) Large blocks of granites are used as building	b) Presence of Feldspar shows beautiful blue		

	stone c) Smaller blocks of granites are used as Railway ballast or Road metal.	and green effect which improves its appearance and hence is used for decorative purposes		
Group	lgneous rock	lgneous rock	lgneous rock	lgneous rock

Hypobyssal Igneous Rocks:

Properties	Pegmatite	Porphyries	Dolerite
	Light colour		Usually dark
Colour	(White, pink. Green)	Light colour	Being almost black
			When fresh

Grain Size	coarse	Medium to coarse	Medium to coarse
Texture	Pegmatitic	Porphyritic	Doleritic

		Because	
Minerals Present	Feldspars, Quartz, Biotite	OfPorphyritic texture It may be Granite porphyry Syenite porphyry Diorite porphyry	Plagioclase. Augite and Hornblende with Some Olivine
Mode of Origin	HAIR	Hypobyssal	Hypobyssal, Basic igneous rock
Engineering Uses	a) The Muscovite mica is used commercially is obtained from pegmatite		Occurs Chiefly in dykes Used as a Road metal
Group	lgneous rock	lgneous rock	lgneous rock

Volcanic Igneous Rocks:

Properties	Rhyolite	Trachyte	Pumicite	Basalt	
------------	----------	----------	----------	--------	--
Colour	Dirty White with Reddish brown Patches	Dark	Silver Gray when Fresh, Ash grayish White	Dark	
------------------	---	--------------------	---	----------------------------	
Grain Size	Fine	Fine	Fine	Fine	
Texture	Vesicular	Trachytic	Vesicular	Vesicular, Amygdaloidal	
Minerals present	Same as granite	Same as Syenite	Same as granite	Plagioclase, Augite	

Mode of origin	Volcanic Acidic	Volcanic	Volcanic	Basic volcanic
	Igneous rock	Intermediate Igneous rock	Igneous rock	Igneous rock

Engineering Uses	Used as filler, Abrassive	 Light weight concrete, Tooth powder,	The crushed basalt is used as a road metal
	Polisher		

NOTE: PAIR- Plutonic Acidic Igneous Rock.

- HIIR Hypobyssal Intermediate Igneous Rock
- PIIR- Plutonic Intermediate Igneous Rock
- BVIR- basic volcanic igneous rock
- PUIR-Plutonic ultra basic igneous rock

2.11 DESCRIPTION OF SEDIMENTARY ROCKS

Properties	Breccia	Conglomerat e	Shale	Sand stone	Lime stone
Color	Light color	Light color (chocolate)	Light (white, pink, black)	Light (red, brown, pink)	Light
Grain size	Rudaceous	Rudaceous	Argillaceous	Arenaceous	Argillaceous
Minerals present	Angular pebbles	Rounded pebbles	Compaction of mud and clay	Quartz, feldspars	Calcite
Cementin g material	Siliceous (much quantity	Ferruginous (because red or brown	Siliceous	Siliceous	Siliceous

_		
	_	
 		 _

	quartz)	color)			
			Ferruginous		
			Calcareous	Ferruginous	Ferruginous
				Calcareous	
					Calcareous
Mode	Mechanica	Mechanical	Mechanical	Mechanical	Chemical
Of origin	L				Organic
					Fossiliferos
					Limestone.

Engineering uses.	a) Used	Harder	Used	a) Siliceous and	Note –
	As	and tougher	for	ferruginous	Depending
	a building	of	bricks and	are used as a	colour
	stone	conglomerate s used	Tile manufacture.	stone	Of limestone's
	b) Used for ornamenta l purposes	as foundation, concrete and railway ballast's.		b) Calcareous sand stones	are classified as,
				as a building stone	1]Siliceous limestone
					[Rich in quartz]
					2]Ferrugino us limestone
					lRed or brown colour.
					3]Calcareou s limestone
					[White colour]
					Limestone is used in cement industry.

2.12 DESCRIPTION OF METAMORPHIC ROCKS

Properties	Slate	Schist	Marble	Gneiss	Quartzite
Color	Bluish black	Dark	White, gray, red, blue, green and yellow	Alternate layers of dark and light	Light
Structure	Slaty	Schistose	Saccharoidal	Gneissose	Granulose

Minerals present	Very fine grained mixture of quartz, chlorite, Seri cite and felds par.	Flaky minerals such as muscovite, Biotite hornblende, chlorite, talc etc. Depending upon the type of flaky mineral present the schist's are described.	Calcite, quartz.	Quartz, felds par, Biotite, hornblende.	Quartz small amount of mica, tourmaline, graphite and iron minerals
Mode of origin	Dynamic metamorphis m Shale	Dynamic metamorphis m	Thermal metamorphis m	Dynamic metamorphis m	Dynamo thermal metamorphis m
	(SR) D.M.	Shale (SR) DM	Lime stone (SR)	Granite (IR)	Sand stone (SR) DTM
	Slate (MR)	Schist	ТМ	DM	Quartzite (MR)
			Marble (MR)	(MR)	
Engineerin g uses	Used for a) Flooring Purposes	Schist being weak rock, are not use d for important works	a) Coarse grained marbles used for historical, monumental and architectural	Used as a road metal and concrete aggregates	Extensively used as a road metal and concrete aggregates

b)	For			
Roc	ofing	b) extensively used as a		
Ma	terials	building stone		
C)	Table	decoration of columns. stair		
Тор)S	cases, floors etc		
d)	Stair	a) Fine-		
Cas	ses	grained marble used		
e) S	Switch	for statues.		
Воа	ards			
f) It	is			
Sel	dom			
Use	ed as			
a b	uilding			
Sto	ne.			
I I			1	1

Rocks:

Format:

Q.2 Describe the Geological properties, uses, and group and identify the rock specimens kept in tray no 7 to 12 (6x2) 12 Marks

Texture/ Structure	Texture is the mutual relationship among the
	Fine-Grain size is < 1m.m. in diameter
	Medium-Grain size is>mm in diameter
Grain Size	Coarse-Grain size is >5m.mn diameter
	Melanocratic-Mafic-Dark colour
Colour	Leucocratic-Light colour-Felsic
Specimen NO	
SL.NO	

Copyright ©2017. cAAS. All rights reserved.

	minerals present in a roc The terms use are- Equigranular, Porphyritic, Pegmatitic.Ophytic, Trachytic, Vesicular, and Amygdaloidal
Minerals Present	
Name	
Mode of origin	
Engineering Uses	
Group	Igneous Rock

Igneous Rocks Example:

Q.2 Describe the Geological properties, uses, and group and identify the rockspecimens kept in tray no 7to 12(6x2) 12 Marks

SL.NO	1
Specimen NO	1
Colour	Light-colour with a white or pink tint
Grain Size	Medium to coarse
Minerals Present	Quartz (Q), Feldspar (F) Biotite (B, Hornblende (H)
Name	Granite
Mode of Origin	Acidic plutonic igneous
Engineering Uses	a) Granite is one of the most important building stone Specially used f decoration, monumental and Architectural purposes
	b) Large blocks of granites are used as building stone
	c) Smaller blocks of granites are used as Railway ballast or
	Road metal.
Group	Igneous Rock

EXERCISE:

Q.2 Describe the Geological properties, uses, and group and identify the rock specimens kept in tray no 7 to 12 (6x2) 12 Marks

Format

Date

1			
1	2	3	4

2.15. Sedimentary Rocks

Q.2 Describe the Geological properties, uses, and group and identify the rock

Specimens kept in tray no 7 to 12

(6x2) 12 Marks

Format Date

SL.NO	1	

BE-4-CV-SKIT-Ph5b1-F02-V2.2

SP.NO	1							
Colour	Leucocratic- Light colour							
	Melanocratic-Dark colour							
Grain Size	Rudaceous-Grainsizeis>2m.m.indiameter							
	Arenaceous-Grain size is in Between 1 to 2mm in							
	Diameter 10							
	Argillaceous less than							
	1 mm in Diamter							
	10							
Cementing Material	Siliceous (Containing much Quantity of Quartz)							
	Calcareous-White colour							
	Ferruginous-(Red or Brown in colour)							
Minerals present								
Name								
Mode of Origin								
Engineerin g Uses								
Group								

Example:

Date

Sl.no	1
Sp.no	1
Colour	Light colour
Grain Size	Rudaceous
Cementing Material	Siliceous
Minerals Present	Angular pebbles
Name	Breccia
Mode of Origin	Mechanical
Engineering Uses	I) Not used as a Building stone
	ii) Used for ornament al purposes
Group	Sedimentary Rock

Exercise:

Q.2 Describe the Geological properties, uses, and group and identify the rock specimens kept in tray no 6 to 12 (6x2) 12 Marks

Date

Format

SL.NO	1	2	3	4

SP.NO		
Colour		
Grain Size		
Cementing Material		
Minerals Present		
Name		
Mode of Origin		
Engineering Uses		
Group		

2.16. Metamorphic Rocks

Q.2 Describe the Geological properties, uses, and group and identify the rock specimens kept in tray no 7 to 12 (6x2) 12Marks

Format

Date

SL.NO	
SP.NO	
Colour	Felsic
	Mafic
Grain Size	Coarse
	Medium
	Fine
Texture/ Structure	Slaty structure
	Gneissose structure
	Schistose structure
	Granulose structure
	Saccharoidal structure
Minerals Present	
Name	
Mode of Origin	Thermal Metamorphism
	Dynamic Metamorphism
	Dynamo Thermal Metamorphism
Engineering Uses	
Group	Metamorphic Rock

Example:

Q.2 Describe the Geological properties, uses, and group and identify the rock specimens kept in tray no 7 to 12 (6x2) 12 Marks

Format:

Date:

SL.NO	
SP.NO	
Colour	Alternating layers of Dark and light
Grain Size	Coarse
Texture/ Structure	Gneissose
Minerals Present	Quartz, Feldspar Biotite, Hornblende
Name	Gneiss
Mode of Origin	Dynamo Thermal Metamorphism
Engineering Uses	Used as a road met And concrete aggregates
Group	Metamorphic Rock

EXERCISE-

Q.2 Describe the Geological properties, uses, and group and identify the rock specimens kept in tray no 7 to 12 (6x2) 12 Marks

Format:

Date:

Sl.No.	1	2	3	4

SP.NO		
Colour		
Grain Size		
Texture/ Structure		
Minerals Present		
Name		
Mode of Origin		
Engineering Uses		
Group		

Photo 1

Photo 2

Photo 3

Granite

Granite Porphyry

Varieties of Pegmatites

18CVL47

Copyright ©2017. cAAS. All rights reserved.

Photo 4. Varieties of Basalts

Photo: 2.5 Varieties of sand stones

Photo: 2.6 Quartzite

Experiment 03 : Borehole problems

	Experiment No.:	3	Marks		Date Planned		Date Conducted	
1	Title	Bor	ehole Proble	ems				·
2	Course Outcomes	Stu roc mii	Student should be able to determine subsurface behavior of rocks, their attitude related to foundation, tunnels, reservoirs and mining.					
3	Aim	To ((Di	determine SI p&strike)	ubsurface	pehavior of	rocks, the	ir attitude	
4	Material / Equipment Required	G	eometry Bo	<				
5	Application Areas	Su tur	bsurface b nnels, rese	ehavior of voirs and i	rocks, thei mining	r attitude r	elated to f	oundation,
6	Remarks							
7	Faculty Signature with Date							

Borehole Problems

(Horizontal Level Ground)

In order to determine the subsurface geology of an area, boreholes are sunk at convenient places in areas such as cultivated lands, forests deserts, alluvium, etc. The surface is completely covered and the outcrops are very few. Such boreholes reveal the presence of economic deposits of coal, petroleum etc. The subsurface geological formations, rock types and their dip and strike can be determined from such borehole data, Which render very valuable information for plans to exploit the hidden treasures.

Bore holes Sunk on Horizontal Ground

Example: Three boreholes are sunk at 3 points of an equilateral triangle whose sides are 480 m each. Is West of Q and R is North of midpoint PQ. Boreholes and R- reach the upper surface of a rich coal seam at 100m, 220m, and 260m depths respectively.

a) Determine the attitude (Dip and strike) of the coal seam.

b) Another borehole is sunk at S, Midpoint of QR. Determine at what depth the borehole S reaches the coal seam

Procedure: Construct an equilateral triangle with a suitable scale; Show the positions of the boreholes. The coal seam is reached at point P and Q at 100m and 220m. So the coal seam dips from p to Q. To determine the inclination (gradient) along PQ construct trough sketch depth diagram and determine the gradient It is 120m in 480m. So it is 1 in 4. Similarly construct the depth diagram along PR. It is 160m in 480m i.e. 1 in 3.Take convenient scale and mark 4 units (CMS) along P Q and 3 units (CMS) along P R from P. They are A and B. Join AB and extend. It is the true strike direction (TSD).

Draw a perpendicular to AB from P. It cuts AB at C. Measure PC. it is 2.85 CMS i.e. the gradient is 1 in 2.85. It is true dip.

To determine the direction of true dip, measures the angle CPQ=45^o .So direction of true dip is the complementary angle from North direction. So $(90^{\circ}-45^{\circ})$ 45° . So it is N 45° E or NE.

True dip 1 In 2.85 along NE. Strike = SE and NW.

To determine the depth at which the borehole S reaches the coal seam, Join PS it intersects AB line (true strike direction) at T. Measure PT with units selected it is 3 CMS. So the gradient along PT is 1IN 3. Measure PS it is 4.2cms =420m.

Depth Horizontal distance PS X Gradient + Depth of borehole at P

= 420 X 1/3 + 100

=140 + 100 =2

To check whether this calculation is correct or not, let us find out the gradient of coal seam along QR.

Draw depth diagram.

The Gradient is 1 in 12 from Q QS is 240m.

2) Three boreholes are sunk at SW, SE, and NW Corners0f Square level ground The Sides of the Square is 150m long. The boreholes are X, Y, Z respectively. The boreholes meet the Coal seam at 15m,in X, 45m in Y, and 60m in Z.

a) Determine the attitude of the coal seam.

b) Fourth borehole is proposed at P, the NE Corner of the square land. Calculate at what depth, the borehole encounters the coal seam.

True depth = 1 in 2.55 along North 30⁰E

Strike = $N60^{\circ}W$ and $S60^{\circ}E$

Depth of unknown point P = Horizontal distance X Gradient + depth of borehole at

Minimum depth

= 216 X 1/ 2.7 + 15 = 80 + 15 = 95m

Experiment 04 : DIP AND STRIKE PROBLEMS

Dip: It is the angle of inclination of a rock bed with the horizontal plane.

d2 d d1

AB = Strike

Cd = True dip

Cd1, Cd2 = Apparent dip

Fig.3.1 Showing Dip and Strike

True dip: It is measured at right angles to the strike.

Apparent dip: If the angle is measured in any other direction as along Cd1, or Cd2 in the figure, it will have a value less than true dip. Such partial dip angles are called "Apparent dips".

STRIKE: It is the direction of a line formed by the direction of the plane of a bed the horizontal plane.

The strike is always at right angles to the true dip.

Task_: Dip and Strike P	Problems	
1.Method	ll Method	III Method
Determination of	Determination of Appar ent dip Amount [A.D.A]	Determination
True		Of
Dip Direction [TDD] and		ApparentDipDirection [ADD]
Irue Dip Amount [TDA]	ADA=? ADD=	TDA = TDD=
ADA = ADD=		ADA = A DD=?
ADA= ADD=		

TDD=?	
TDA=?	

Fig.3.2

W

SW

DUE NORTH = North is the direction. Similarly Duesouth.Due east. Due west.

1.METHOD: Determination of True Dip

Direction [TDD] And True Dip Amount

Problem: A bed of sandstone dips at an angle of 30° in a direction of $S30^{\circ}E$ and 30° along $S15^{\circ}W$. Find the amount of true dip.

Procedure:

1 Draw a Circle by convenient radius and mark N.S.E.W.directions with O as centre.

2 Draw the line OP=S30°E & OR=S15°W.

3 Draw a perpendicular line Op frompfrom point O, which cuts the circle at Q. Now at Q draw a complementary angle $[90^\circ - 30^\circ=60^\circ]$ that cuts the line OP at point P Join PQ.

18CVL47

4 Similarly draw a perpendicular to the line OR from point O, which cuts the circle atS.draw a complementary angle [90° - 30° =60°], which cuts the line, OR at point R. Join RS.

5 Now join the points P and R, which is the strike direction.

6 For finding amount of true dip draw a perpendicular from to the linePR which meets the line PR at A join OA.Draw a perpendicular to the line OA from point O, which cuts the circle at B. Join AB. Now angle OAB will give the amount of true dip. And OA is the direction of true dip.

Result-True Dip Amount (TDA)= 30⁰ True Dip Direction (TDD) = S8⁰E

Exercise

1) The apparent dip of a coal bed is 30⁰in a direction of S 30⁰E and in a direction of S 58⁰W with an apparent dip of 45⁰. Find the direction and amount of true dip.

Result - TDA= OAB=49⁰-

TDD= OA= S8⁰E

2) A Limestone bed dips 30⁰ along S25⁰E and dips 33⁰ along N85⁰E. Determine its true Dip.

Result- TDA=OAB=36⁰

TDD=OA=N8⁰E

3) In a dam site a bed of limestone dips 25⁰ along NW and 20⁰ along NEE Determine its true dip.

Result- TDA= OAB=36⁰

TDD=OA=N6⁰E

4) A Coal bed dips 30[°] along S30[°]W And 38[°] along N60[°]W. Determine its True dip. Result-- TDA=OAB=42[°]

TDD=OA=S85⁰W

5) At a Dam site a bed of Quartzite dips 28° along N20°E And 34° alongS80°E. Determine its true dip.

Result-- TDA=OAB=38° TDD=OA=N68°E

11 Method: Determination of Apparent Dip Amount [ADA]

PROBLEM—Coal seam dips 35^oalong S40^oW. Determine the amount of apparent dip in the direction of S 75^oW.

TD.A= 35[°] T.DD=S40 [°]W ADA=? ADD=S75[°]W

Ν

Fig. 3.4

Procedure

1 Draw a circle by convenient radius and mark N.S.E.W. directions with Oas centre.

2 Draw a line OP=S40[°] W Draw a perpendicular to the line OP from point O which cuts the circle at Q .Now at Q D raw a complementary angle 90° - 35° =55[°] which cuts the line OP at point P. Join PQ.

3 From the intersection point P draw a parallel line to the line OQ that is the strike line.

4 Let a line equal to S 75⁰ W.which cuts the strike line at point R. join OR – oR Line.

5 Draw a perpendicular to the line OR from point O, which cuts the circle at S. Join R and S. Measure angle ORS, which is the amount of apparent dip.

Note: ORS should be less than the true dip.

Amount given in the problem.

Result: ADA alongN70 $^{\circ}$ W =ORS=30 $^{\circ}$

-	Experiment No.:	4	Marks		Date Planned		Date Conducted	
1	Title	Dip	and Strike p	problems.				
2	Course Outcomes	Stı En	udent shou gineering p	uld be able projects (Ra	e to detern ailway lines	mine attit s, tunnels, (ude of roc dams, rese	cks in Civil rvoirs).
3	Aim	То	determine	e attitude o	of rocks (Di	p&strike)		
4	Material / Equipment Required	G	eometry box	<				
5	Application Areas	Ra	ilway lines,	tunnels, d	ams, reser	voirs.		
6	Remarks							
7	Faculty Signature with Date							

Experiment 05: Thickness problems

-	Experiment No.:	5	Marks		Date Planned		Date Conducted	
1	Title	Thic	kness prob	lems.				
2	Course Outcomes	Stuc Civil rese	lent shou Engine rvoirs).	Ild be able ering pro	to d eterm ojects (Ra	ine thicknei ilway line	ess of rock es, tunne	s/strata in ls, dams,
3	Aim	To d	etermine	thickness	of rocks/s	strata/shal	e/minerals	5.
4	Material / Equipment Required	Geo	ometry bo>	(
5	Application Areas	Railv	way lines,	tunnels, d	ams, reser	voirs.		
6	Remarks							
7	Faculty Signature with Date							

-	Experiment No.:	6	Marks		Date Planned		Date Conducted			
1	Title	Mor	Morphometric Analysis							
2	Course Outcomes	Stuo extr	tudent should be able to interpret toposheets and learn to extract Drainage Basin and Morphometric Analysis.							
3	Aim	To ir Mor	To interpret toposheets and learn to extract Drainage Basin and Morphometric Analysis							
4	Material / Equipment Required	ί Τοι	posheets, T	racing sheets	5					
5	Application Areas	Inte help	Interpretation of toposheets and Morphometric Analysis which helps in reservoir and check dam planning							
6	Remarks									
7	Faculty Signature with Date									

Experiment 07 : Geological maps

-	Experiment No.:	7	Marks		Date Planned		Date Conducted				
1	Title	Geo	eological maps								
2	Course Outcomes	Stu Civ	tudent should be able to interpret geological maps related to ivil Engineering Projects.								
3	Aim	Int∉ strเ	nterpretation of geological maps and identifying geological tructures which helps in Civil Engineering Projects.								
4	Material / Equipment Required	,	Geo	logical Maps	, Tracing she	ets, graph sh	neets				
5	Application Areas	lde Prc	dentifying geological structures which helps in Civil Engineering Projects.								
6	Remarks										
7	Faculty Signature with Date										

Experiment 08: Satellite images

-	Experiment No.:	8	Marks		Date Planned		Date Conducted			
1	Title	Sat	tellite Imaç	jes.			II			
2	Course Outcomes	Stı use	tudent should be able to interpret satellite Images viz, land se/land covers, water bodies, forest, etc.							
3	Aim	Inte	nterpretation of satellite Images.							
4	Material / Equipment Required	sat	satellite Images and tracingsheets.							
5	Application	Th	rough sate	ellite Image	es one can	extract la	ind use/lar	nd covers,		
	Areas	wa	ter bodies	, forest, etc	. maps.					
6	Remarks									
7	Faculty Signature with Date									

Experiment 09: Field Work

-	Experiment No.:	9	Marks		Date Planned		Date Conducted		
1	Title	Fie	ld work						
2	Course Outcomes	Stı str	tudent should be able to identify minerals, rocks, geological tructures and their engineering importance.						
	Aim	Fie	ield work						
4	Material / Equipment Required	́ На	versack, Picl	k hammer, top	oosheets, C	PS, etc.			
5	Application Areas	Stı ge	udents w ological st	ill master ructures an	in ider Id their er	ntification ngineering i	of minera mportance	ıls, rocks,	
6	Remarks								
7	Faculty Signature with Date								

F. Content to Experiment Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

Expt-	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructi	Assessment
#	(Split module content into 2 parts which	Teachin	Learning	Bloo	Action	on	Methods to
	have similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
			for	Level	Learning	for	Learning
			Content			Learning	
Α	В	С	D	Ε	F	G	Н
1	Identification of minerals as mentioned in theory, their properties, uses and manufacturing of construction materials.	. 08	- L2 - L3	L3	Identifica tion of Minerals-	- Lecture - demonst ration	- CIA - Assignment
2	Identification of rocks as mentioned in theory, their engineering properties and uses in construction and decorative purposes	08	- L2 - L3	L3	ldentifica tion of Rocks	- Lecture - demonst ration -	-CIA Assignment - Assignment -
3	Borehole problems: Determination of subsurface behavior of rocks, their attitude related to foundation, tunnels, reservoirs and mining. Triangular and Square methods. (2	04	- L2 - L3 - L4	L4	Determin ing strata	- Lecture - demonst ration	-CIA Assignment - Assignment

	methods)						
4	Dip and Strike problems. Determine Apparent dip and True dip. (2 methods)	04	- L2 - L3 - L4	L4	Determin ing Dip&strik e	- Lecture - demonst ration	- CIA - Assignment
5	Calculation of Vertical, True thickness and width of the outcrops. (3 methods)	04	- L2 - L3 - L4	L4	Determin ing Thicknes s	- Lecture - demonst ration	- CIA - Assignment
6	Study of Toposheets and Interpretation, Extraction of Drainage Basin and its Morphometric Analysis. (3Toposheets)	04	- L2 - L3 - L4 -L5	L5	- Interpreti ng -	- Lecture - demonst ration -	-CIA Assignment - -
7	Interpretation and drawing of sections for geological maps showing tilted beds, faults, unconformities etc. (10 Maps)	08	- L2 - L3 - L4 -L5	L5	- Interpreti ng -	- Lecture - Tutorial -	-CIA Assignment - -
8	Interpretation of Satellite Images. (2 Satellite images)	04	- L2 - L3 - L4 -L5	L5	- Interpreti ng -	- Lecture - demonst ration	-CIA Assignment - -
9	Field work– To identify Minerals, Rocks, Geomorphology and Structural features with related to the Civil Engineering projects	24	- L2 - L3 - L4 -L5 -L6	L6	-Field knowled ge -	- Lecture - demonst ration -Field Visit	-CIA Assignment - -

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Expt	Learning or Outcome from study of the Content or Syllabus	Identified Concepts from Content	Final Concept	Concept Justification (What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	CO Components (1.Action Verb, 2.Knowledge, 3.Condition / Methodology, 4.Benchmark)	Course Outcome Student Should be able to
<u>A</u> 1	/ -Physical properties of minerals -	J Minerals	<u>K</u> Minerals	L Engineering properties of minerals	M - Understand - Apply knowledge of minerals -	N know the engineering properties of minerals and their engineering uses.
2	- Engineering Properties of	Rocks	Rocks	Engineering properties of rocks	- Understand - Apply knowledge of	know engineering properties of

	Rocks				rocks	rocks and their engineering uses.
3	Borehole problems	Subsurfac e condition	Subsurface condition	subsurface behavior of rocks	- Analyze - the problem	Determine subsurface behavior of rocks, their attitude related to foundation, tunnels, reservoirs and mining.
4	Dip and Strike problems	Attitude of beds	Attitude of beds	Attitude of rocks in Civil Engineering projects	Analyze - the problem	Determine attitude of rocks in Civil Engineering projects (Railway lines, tunnels, dams, reservoirs).
5	Thickness of strata	Thickness	Thickness	Vertical, true thickness and width of the outcrops	- Analyze - the problem	Determine/calcu late vertical, true thickness and width of the outcrops.
6	Study of Toposheets and Interpretatio n	Toposhee ts	Toposheets	Extract Drainage Basin and Morphometric Analysis	- Evaluate/extract - River basin -	Interpret toposheets and learn to extract Drainage Basin and Morphometric Analysis.
7	Interpretatio n and drawing of sections for geological maps	Geologica l maps	Geological maps	Geological structures viz, faults, folds, joints, etc.	- Evaluate/extract structural features 	Interpret geological maps related to Civil Engineering Projects
8	Interpretatio n of Satellite Images	Satellite Images	Satellite Images	Interpretation of satellite Images	- Evaluate/extract different layers	To interpret satellite Images.
9	Field work	Field work	Field work	Minerals, Rocks, Geomorphology and Structural features	- Locate and Create Geological map	To identify Minerals, Rocks, Geomorphology and Structural features with related to the Civil Engineering projects.
